Luz para a inteligência, Calor para a vontade

segunda-feira, 20 de julho de 2015

O Homem que Calculava - 32

(Continuação da obra "O homem que calculava", de Malba Tahan)

CAPÍTULO XXXII       
Como foi Beremiz interrogado por um astrônomo libanês.
O problema da pérola mais leve.
O astrônomo cita um poeta em homenagem ao calculista.

Astrônomo brasileiro Ronaldo Mourão (falecido em 2014)
  
Chamava-se Mohíldin Ihaia Banabixacar, geômetra e astrônomo, uma das figuras mais extraordinárias do Islã, o sétimo e último sábio que devia argüir Beremiz. Nascido no Líbano, tinha o nome escrito em cinco mesquitas, e seus livros eram lidos até pelos rumis (1). Seria impossível encontrar-se, sob o céu do Islã, inteligência mais possante e cultura mais sólida e vasta.

O erudito Banabixacar, o Libanês, na sua linguagem clara e impecável, assim falou, com bonomia sorridente:

- Sinto-me, realmente, encantado com o que tive oportunidade de ouvir. O ilustre matemático persa acaba de demonstrar, várias vezes, a pujança de seu incomparável talento. Gostaria, também, colaborando neste brilhante torneio, de oferecer ao calculista Beremiz Samir interessante problema que aprendi, quando ainda moço, de um sacerdote budista que cultivava a ciência dos números.

Acudiu o califa, vivamente interessado:
- Ouviremos, ó Irmão dos Árabes, com o máximo prazer, a vossa argüição. Espero que o jovem persa, que até agora se tem mantido inabalável nos domínios do cálculo, saiba resolver a questão formulada pelo velho budista (Allah se compadeça desse idólatra!).

Percebendo o sábio libanês que sua inesperada proposta havia despertado a atenção do rei, dos vizires e dos nobres muçulmanos, assim falou, dirigindo-se serenamente ao Homem que Calculava:

- A esse problema caberia perfeitamente denominação de “problema da pérola mais leve”. Tem o seguinte enunciado: “Um mercador de Benares, na índia, dispunha de oito pérolas iguais - na forma, no tamanho e na cor. Dessas oito pérolas, sete tinham o mesmo peso; a oitava, entretanto, era um pouquinho mais leve que as outras. Como poderia o mercador descobrir a pérola mais leve e indicá-la, com toda a segurança, usando a balança apenas duas vezes, isto é, efetuando apenas duas pesagens? É esse o problema, ó calculista! Queira Allah inspirar-te a solução mais simples e mais perfeita!”

Ao ouvir o enunciado do problema das pérolas, um cheique de cabelos brancos, com largo colar de ouro, que se achava ao lado do capitão Sayeg, murmurou, em voz baixa:
- Que belíssimo problema! Esse sábio libanês é um monstro! Glória ao Líbano, o País dos Cedros!

Beremiz Samir, depois de refletir durante breves instantes, assim falou, com voz remansada e firme:

- Não me parece difícil ou obscuro o problema budista da pérola mais leve. Um raciocínio bem encaminhado pode revelar-nos, desde logo, a solução. Vejamos: Tenho oito pérolas iguais. Iguais na forma, na cor, no brilho e no tamanho. Rigorosamente iguais, diríamos assim. Alguém nos assegurou que, entre essas oito pérolas, destaca-se uma que é um pouquinho mais leve do que as outras sete, e que essas outras sete apresentam o mesmo peso. Para descobrir a mais leve só há um meio. É usar uma balança. E deve ser, para o caso das pérolas, uma balança delicada e fina, de braços longos e pratos bem leves. A balança deve ser sensível. E mais ainda. A balança deve ser exata. Tomando as pérolas duas a duas e colocando-as na balança (uma em cada prato), eu descubro, é claro, qual a pérola mais leve; mas, se a pérola mais leve for uma das duas últimas, eu serei obrigado a efetuar quatro pesagens. Ora, o problema exige que a pérola mais leve seja descoberta e determinada com duas pesagens apenas - qualquer que seja a posição por ela ocupada. A solução que me parece mais simples é a seguinte: - Dividamos as pérolas em três grupos. E chamemos A, B e C esses grupos. O grupo A terá três pérolas; o grupo B terá, também, três pérolas; o terceiro grupo C será constituído pelas duas restantes. Com duas pesagens devo apontar com segurança, sem possibilidade de erro, qual a pérola mais leve, sabendo que sete são iguais em peso. Levemos os grupos A e B para a balança e coloquemos um grupo em cada prato (estamos, assim, efetuando a primeira pesagem). Duas hipóteses podem ocorrer: lª hipótese - Os grupos A e B apresentam pesos iguais. 2ª hipótese - Os grupos A e B apresentam pesos desiguais, sendo um deles (o A, por exemplo) mais leve. Na primeira hipótese (A e B com o mesmo peso) podemos garantir que a pérola mais leve não pertence ao grupo A, nem figura no grupo B. A pérola procurada é uma das duas que formam o grupo C. Tomemos, pois, essas duas pérolas que formam o grupo C e levemo-las para a balança e ponhamos uma em cada prato (segunda pesagem). A balança indicará qual a mais leve, que fica, assim, determinada. Na segunda hipótese (A sendo mais leve do que B) é claro que a pérola mais leve pertence ao grupo A, ou melhor, a pérola mais leve é uma das três pérolas do grupo menos pesado. Tomemos, então, duas pérolas quaisquer do grupo A e deixemos a outra de lado. Levemos essas duas pérolas à balança e pesemo-las (segunda pesagem). Se a balança ficar em equilíbrio, a terceira pérola (que ficara de lado) é a mais leve. Se houver desequilíbrio, a pérola mais leve estará no prato que subiu. - Fica assim, ó Príncipe dos Crentes - rematou Beremiz -, resolvido o problema da pérola mais leve, formulado por ilustre sacerdote budista e aqui apresentado pelo nosso hóspede geômetra libanês.

O astrônomo Banabixacar, o Libanês, classificou de impecável a solução apresentada por Beremiz, e rematou a sua sentença nos seguintes termos:

- Só um verdadeiro geômetra poderia raciocinar com tanta perfeição. A solução que acabo de ouvir, em relação ao problema da pérola mais leve, é um verdadeiro poema de beleza e simplicidade.

E para homenagear o calculista, o velho astrônomo do país dos cedros proferiu os seguintes versos: 
“Se uma rosa de amor tu guardaste,
Bem no teu coração; 
Se a um Deus supremo e justo endereçaste
Tua humilde oração; 
Se com a taça erguida
Cantaste, um dia, o teu louvor à vida,
Tu não viveste em vão...” (2) 

Beremiz agradeceu emocionado, inclinando ligeiramente a cabeça e levando a mão direita à altura do coração. Os versos que ele acabara de ouvir eram de um poeta persa, que foi também geômetra e astrônomo: Omar Khayyam. (Que Allah o tenha em sua glória!) Sim, por Allah! ...
...................................

Notas:
1 - “Cristãos.”
2 - Estes versos são de Omar Khayyam, poeta e geômetra persa. Trad. de J. B. de Mello e Souza.

Nenhum comentário: